HYDRODYNAMICS OF HOMOGENEOUS SUSPENSIONS

Yu. A. Buevich

The system of dynamic equations describingthe average motion of the phases of a monodis-
perse suspension considered as two interacting interpenetrating continua is obtained. Re-
lations are written which permit determining the average quantities and the correlation func-
tions characterizing the local structure of the flowing suspension,

The general principles underlying the physicomechanical theory of dispersed systems based on sta-
tistical analysis of their internal structure (random velocities of the particles and of the fluid phase, and
suspension pressure and concentration pulsations) are discussed in [1]. The application of the developed
theory to the study of the structure and mechanical behavior of gaseous suspensions, where the calculations
can be simplified considerably by neglecting the momentum and viscosity of the gas, has made it possible
to achieve good agreement with the available experimental data and to explain several important observed
phenomena, Gas suspensions are characterized by a very high level of development of the pulsative ("pseudo-
turbulent”) motions of the phases, and their flows are frequently locally nonhomogeneous, in the sense that
in the flows there are formed aggregates containing a large number of particles, bubbles filled only with
gas, and so on [2].

Conversely, flows of suspensions of sufficiently fine particles in liquids are usually locally homo-
geneous and the velocities of the random phase pulsations are relatively small, However, in this case we
still can not neglect the inertial forces which arise from acceleration of the liquid or the viscous stresses
in the liquid. Therefore, the analysis of such suspensions differs somewhat from that carried out in [1, 2].
Specifically, it is necessary to make a more careful examination of the inferaction forces between the two
phases, associated with the acceleration of the added liquid masses during relative motion of the particles,
and the resulting refinement of the previously obtained dynamic and stochastic equations. This refinement
is made in the present study; in so doing the logical scheme of {1, 2] is retained unchanged.

1. DYNAMIC EQUATIONS

In accordance with the method of {1], we represent the particle velocity w, velocity v of the liquid
phase in its specific volume, and the local values of the suspension volumetric concentration p and pres-
sure p in the form

vy =<Kwy=<p>=<p>=0
v=(V4v, w=(wy4w, p=<p>+p, p=<p+p (1.1

Here the first terms in the right sides are the ensemble average values of the corresponding quan-
tities (dynamic variables), and the second terms are their random pulsations (pseudoturbulent variables).
The ensemble averaging in (1.1) can be pictured as sequential averaging with respect to the conditional dis-
tributions f(p; t, | p, v, W), f(p; t, v|v, w)f(v; t, r| w) introduced in [1], normed by unity, and then with
respect to the particle velocity distribution f (w; t, r), which is conveniently considered to be normed by
the countable particle concentration n(t, r). If we perform averaging only with respect to the conditional
distributions (denoted below by the superscript degree symbol), we can write
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where < J; denotesaveraging with respect to the distribution f (w; t, r). For the last terms in the right
sides of (1.2), we take

v =s,w, w=1Iw, o"=sw, T=spw, I=]8;| (1.3)

Here sy, sp, spare some unknown tensors and vectors which can, naturally, depend on the dynamic
variables. We note that the assumptions (1.3) are not essential for formulating the dynamic and stochastic
equations but are important in finding the function f(w; t, r). We note that analogous relations can also
be written for the other random quantities with double primes,

In order to obtain the dynamic equations defining the average motion of the dispersed phase, we must
have the kinetic equation for the unary distribution function f (w; t, r). As noted in [1], this equation in the
conventional sense (not containing higher multiparticle distribution functions) does not exist even for par-
ticles suspended in a gas. Therefore, an approximate equation was used in [1], in which the total force
Fp acting on the particle was replaced by its actual average value. Here we shall also use the quantity
¥, °, obtained by averaging with respect to the conditional distributions, with the objective of obtaining the
equation for f (w; t, r), which plays the role of the kinetic equation "in the mean,*

We assume first that direct collisions do not occur in the suspended particle system, and so we in-
troduce the probability W(Ar, Aw, At ] Ty, Wy, ty) of particle transfer from the phase volume element (r,,
Ty +dr; wy, Wwot dw) in which it was located at the moment t, into the element (r, r+dr; w, w+ dw) during
the time At, where

r=ry,+ Ar, W= wy -+ Aw, t=1,-+ Al

Clearly, f(w; t, ¥) can be written in integral form
Fow b0y = W (ar, Aw, At fro, wo, 1)1 (3 o, 10) drodwo

Hence we obtain conventionally [3] the equation

af 3 /f{Ar} 8 | f{AW} T
3= =3 (L) — o () — o (5 o) 0w a0
a0, \ a. 9. .
+ 2[5 war ) (AweAr) (o 77 ) {AwsA W]
axb = [] aib,- H, A:B= AI]B]‘L

where the symbol {} denotes averaging with respect to the transfer probability, for example,
{Ar} = SS ArW (Ar, Aw, At |r, w, ty) drydw,
Let us examine (1.4) in some particular cases, For a gas of elastic particles the transfer prob-
ability is the d-function, and to within O((At?) we have
{Ar} = Ar = wAt, {Aw}=Aw = (Fp/m) At

where m is the particle mass, Fp is independent of w, and all the remaining quantities in the braces in
(1.4) are of order (At)?, For small At we obtain from (1.4) the Boltzmann equation without the collisional
term,

For a system of Brownian particles we have with the previous accuracy
{Ary = wAi, {Aw} = (Fp/m) At = — awAt, {AwsAw} ~ AAL
where A is some ("diffusional") tensor, Using these relations, we obtain the Fokker— Planck equation,

It follows from experiments [4] that in the system in question there are both large-~scale pulsations
and small-scale "jitter” of the particles and liquid within the limits of their specific volumes, and these
pseudoturbulence components can be considered statistically independent, The characteristic time of these
components coincides respectively with the "outer" T and "inner" 7 pseudoturbulence time scales (see
11, 2] and the references therein), where T > 7, Selecting At in (1.4) so that 7<<At<T, we see that in the
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general case the resulting equation will contain terms which are typical for both the Boltzmann and Fokker—
Planck equations. Specifically, there appears in this equation a term describing diffusion in velocity space.
It appears that the kinetic equation for suspended particles with account for diffusion in velocity space was
first studied in [5] and [6]. The last term does not affect the mass and momentum conservation equations
for the dispersed phase, and in this connection it was not introduced in [1]. We shall consider this term
here, bearing in mind some further applications,

Converting in the usual way from the set of independent variables t, r, w to the set t, r, w'=w~ (W)
and introducing the collisional term, we obtain from (1.4) the kinetic equation [7]

Dt W 827 [(FIZ Df;f})f] (aava W) <ai *<W>>
:_i_( 2, 0W'>:(Af)+<%>c, _DQL_ZW_}.(W_(% (1.5)

ow

The last term in (1.5) describes the change of f (w; t, r) owing to direct collisions between particles,
If the small-scale motions are isotropic (some evidence favoring this hypothesis is presented in [4]), then
A=Al

If the collisions do not lead to change of the total mass and momentum of the colliding particles,
with the aid of standard techniques [7] we obtain the following conservation equations:

a a3 D a
2 DKoy (wd) = 52 1 (py Z2 = 0
D<{w> ap® .
OM :~%—+5§0—><Fp>, PP d, (o (W' W' (1.6)

Here d, is the particle material density, and PP) is the internal stress tensor in the dispersed phase.
The expression (1.6) for p(P) was obtained by neglecting the instantaneous nature of momentum transport
within the particles themselves. Account for this effect, which plays a significant role in concentrated sys-
tems, leads to the following expression for pp)
PP = dy (o (wew'y, 9= [1— (o> /px) "]

e

(1.7)
Here px is the volumetric concentration of the suspension in the dense packing state.

Now let us examine the forces acting on the particle. The force mg acts on the particle from the ex-
ternal mass field, where g is the acceleration of this field. We represent the interaction force of the par-
ticle with the surrounding fluid in the form (1, 8]

t
a d e d dt’ (1.8)
Fi:_aoa—f+um[BK(p)u+§(p)7‘;+T3 1(p) “L » Vt_t,}
—00
4 W 9 (v M __a _
C'o——:j—ﬂa:i, SH‘—Za—g" ~T(\—:[—) , vo—-a—lll, M—-?:-, U=v—w

Here differentiation with respect to time is performed along the particle trajectory; a is the particle
radius; i, and d; are the viscosity and density of the fluid; and K, £, 5 are some functions of p, whose spe-
cific form is not essential for the purposes of this study. For an isolated Stokesian particle we have

K=1,t=", n=1

In (1.8) no account is taken of the transverse force, which acts even on the Stokesian particle in shear
flow [9], or of possible rotation of the particles, Moreover, the viscous interphase interaction force is
considered to be linear in the relative velocity u. These approximations are well justified for sufficiently
small Reynolds numbers for flow about particles characteristic for the suspensions considered here.

To within terms of second order in the pseudoturbulent variables we obtainfrom (1.8) the relations

(Foy ~ — 5052 - um {B [K W + d‘iﬂf) WS+ o (wd (o]
« D <ll> d'zz D( 3 ,
TS <p> <p ( ( <“>>>+ 2 A5 <0

t ‘ ,
- S [n DD(’:D (0> <p < \ ,%‘_) <u>>> +—:—% Dl<);D <P’2>l:t, V;ltt?}

—00

(1.9)
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K=K(p)), E=E(e), n=n{p))

In the expression for F;' there must in addition appear the sum of terms of the form a'h'~ (a'b"),
where a' and b' are arbitrary pseudoturbulent variables. However, here and in the sequel in the stochastic
equations we actually use quantities obtained by averaging over the time interval At> 7 introduced above.
The characteristic time for change of the indicated terms with zero average is 7, therefore they drop out
in such averaging (see also discussion in [1]),

Tor the vector Fi° in (1.5) we have the representation

F.’ =(Fy 4 F/ 0,0, p =5, W, s,W,8,W), s, =s,—1I (1.10)

1

In the second term in the right side of (1.10) the arguments are replaced in accordance with (1.1)-
(1.3).

In deriving (1.6) from (1.5), it is assumed that the momentum of the colliding particles is collision-
invariant, In actuality, the velocities of both elastic particies participating in the collision change step-
wise as a result of the collision, which leads to stepwise acceleration of the added fluid masses, It is ob-
vious that the force resulting from these jumps is not taken into account in {18]. This force was calculated
in [10] for an isolated Stokesian particle; if the particle velocity changes jumpwise by the magnitude Aw
at the moment t =0, then

:%mk —{———)Aw (1.11)

If the average time between two successive particle velocity jumps is T o» the total particle momen-
trum loss as a result of a single jump is written in the form

TC
AM = SFsdtzxm(%+zyVi) (1.12)

0

This effect is most easily taken into account by "smearing" this momentum loss over time, i.e., by
introducing into the expression for Fp the additional "dissipative™ force Fy. The force F g has precisely
the same sense as, for example, the "diffusive” force introduced in the analysis of diffusion processes by
the methods of irreversible process thermodynamics, To determine Fq we evaluate the total particle en-
ergy dissipation in the suspension owing to instantaneous acceleration of the fluid phase during collisions.
Examining the collision of a pair of elastic particles in a coordinate system in which one of them is at rest
and the other travels with the relative velocity V, forming the angle ¥ with the line of centers at the mo-
ment of collision, we see that the velocity jump of the moving particle is 2 V sin 9 [7]. Accounting for the
constrained nature of the motion of replacing the coefficient 1/2 in (1.12) by £, and replacing v by v, we
have from (1.12)

MV, ) = ym& -+ 4m V v,) Vsing (1.13)
Hence, we obtain also the expression for the work AA performed on the fluid as a result of the col-
lision
AV, ) = um(E -+ 4yn V1)V sin®y (1.14)
We obtain the specific particle energy dissipation Wg per unit time owing to the considered phenom-

enon after averaging (1.14) with respect to V and the collision parameter ¥ and multiplying the result by
N/2 (where N/n=71"1; is the collision frequency), i.e., we have from (1.14)

<2 SAA cos Pd (cos 1L)> = —nmN (E + 4”‘/1/” > {w'?y (1.15)
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Here we have taken (VZ) =c <w'2>. Representing W3 in the form of a sum over the particles in unit
volume, we have from (1,15)

Wy = __Z Fd(j)w'(j), Fg=—umiw, [= _Z_ N <§ 4 b l/%) (1.16)

. n
J=1

The parameters ¢ and N introduced above can be approximately evaluated by using the correspond-

ing expressions which hold for a dense gas with isotropic velocity distribution [7]:
1/2
c==2, N =16a%n? (%(w’%) %o n:<Tp0> (1.17)

Here the coefficient ¥ shows how many times the binary collision frequency increases in the system
of particles of volume ¢, #0 in comparison with the system of point particles. Using the Enskog results
[7, 11], for small and large {(p) we obtain the following expressions for x for the dense gas of elastic
spheres:

1—1/5<p) 1

L= T8y P <pw L o o — gy PP (1.18)

From (1.16) and (1.17) we obtain also the esiimate for ¢:
i S [ (2 ] 119

We note that the expressions obtained here can be considered valid only for locally homogeneous
dispersed systems, when it is admissible to consider the particles independently of one another. How-
ever, local nonhomogeneity is characteristic basically for gas suspension flows, where within the frame-
work of the approximation ®=0 (but 3% #0) used in [1, 2] the force Fy from (1.16) can in general be neg-
lected.

In deriving the dynamic equations for the fluid phase, we write the equations of motion of the fluid
through the lattice of pulsating particles in the form

d [/} 2 2 2 9
(r+var)e—U=mg=0, dl=p)|g+vyg)v=—"7
d 9, dv; 2 o
+ E,;:e);i—dl(l—(p))g——%:—Fi, &= '3;;7+'<9—mi——§6i7'%;—= B =S (p) (1.20)

Here u is the effective viscosity of the fluid phase flowing through the particle lattice. [The func-
tion S(p) was calculated in [12] on the basis of the cellular model of constrained particle flow. V. M. Safrai,
using altered versions of this model, obtained recently somewhat different expressions for S(p).] The
viscous term is introduced into (1.20) so that the "compressibility” of the fluid phase owing to changes of
suspension concentrationdoes not leadto any energy dissipation. The term with the viscous stresses in (1.20)
is not multiplied by 1 — p, since by the sense of its definition the viscosity u describes the stresses re-
ferred to the volume of the mixture, and not to the volume of the fluid alone [10, 12].

Averaging (1,20), we obtain, as in [1], the dynamic equations for the fluid phase
9’ 2 vy @
(g + W )< — (=) X2 Mg g — vy

A7 (1= (o) (V) + 7 (L — <p3) <¥ = (v3) + 28]
PP a¢p> ] 2
= = T = R (S<e S ey 4 ) )
Fdi(— o) — 0L, S=5(<p)) (1.21)

PO =dy (1 — (pd) (v V' A g (v - (VD % ]
A discussion of the sense of the various terms in (1.21) is presented in [1}].

The different pseudoturbulent averages appearing in (1.6) and (1,21) must, naturally, be expressed
in terms of the dynamic variables. Usually solutions of equations of the type (1.5) are used for this pur-
poses however, in the present case this cannot be done since, first, (1.5} does not contain information on
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v', p', pt and, second, it depends on the unknown tensor A, Therefore, here, as in 1, 2], we use stationary
random process correlation theory to determine the pseudoturbulent characteristics.

2. STOCHASTIC EQUATIONS

Following the method of [1], the stochastic equations for pseudoturbulent pulsations are obtained
from the equation of motion of some particle and the equations (1.20), after subtracting from them the
corresponding averaged equations and averaging the result over the time interval At >, In so doing, in
[1] the time derivatives along the particle trajectories were transformed using the formula

d
= TV

although, for example, {wd/0r) @ does not have a clear physical meaning. Here we identify in the time de-
rivatives of different type precisely the derivative d/dt, for example,

a3 [i] d 3
TV = T U

Then we obtain from (1,20) the stochastic equations

\dt +<U>3,)p+ o p——(1—<p>) a<P>u’~0
d1(1~<p>)<dt+<u> )V d (1= (0) (u —)<v>—dlp'<—at~+<v>—a"’r—)<v> (2.1)
{p> ’
Z—ar +Hoar<SeTm<> > ;)DF

Further, the particle equation of motion has the form
dw
m——=F+F+F+mg="F, (2.2)

where F¢ is the random force acting during collision of the identified particle with the neighboring par~
ticles and disappearing upon averaging over At., After a simple transformation we obtain from (2.2) still
another stochastic equation

m———— —F +Fd1 Fd,EFd (2.3)

Thus, all the random functions are examined in the coordinate system traveling together with the
particle. In the zero approximation with respect to the derivatives of the dynamic quantities, the approach
in this study is idertical to that of [1], where the analysis was made in a coordinate system traveling to-
gether with the average dispersed phase flux.

We represent all the random functions in the form of Fourier—Stieltjes integrals, for example,

pag. Sei(mHkr) Az, v = Sei(mtqkr) daz., (2.4)

Substituting relations of the type (2.4) into (2.1) and (2.3), we obtain the equations for the spectral
measures in terms of Fourier—Stieltjes integrals

a . 3 <p)
S|z — i (1 — (3 k dZy + 5> (42, — dZy) = 0

| (@ + k) +
dy (1= <o) [0+ 0 K) Zy -+ (02 — dZ0) 5 | <9 | = du [ 25+ (<) 5 ) <)z, (2.5)

= —ikdZy + po {— S[a, 4 $k 2] + 5 (1) k + 2 az,

L[ 9<p> 2 dx8 op
+ <—ar—<k*dZD A dZyx k— 2 (kdZ,) I)] + e g (e dzp}
— 2 47 — idyo dZ, = oy (2§ + dZ)
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We obtain the relations for dzg) and dz%i) from (1.9) and (1.16)

i - dK
dZ§) = — isokdZp + dio {B [K (4, — dZy) + s <ud dzp}

+ [0 (@20 — d2,) + (s %) <uy]+ T D0 az,
7 [11(©) (020 — dZs) + (@2 5 72 (0) + 72 (0) 42, | (2.6)

dZ¥ = — dyo b dZ,

The quantities ry(w), ry(w), r3(w) are represented in the form

N o ¢ o
ry(o) = zw& N[ e‘-‘"-V—T% » Ia{o) = S n<u lz-re’“‘"-#%
0
- ’ 2.7)
dn  Dw . dv
rqa () = P el —iwT L
o) = § 705 25| e

Equations (2.5) with account for (2.6), (2.7) permit expressing the seven spectral measures dZyi,
dZwi, dZp (i=1, 2, 3) in terms of the spectral measure dZp and thereby determine the statistical char-
acteristics of all the random processes in terms of the process spectral density p!'. The expression for
the latter is obtained with the aid of the generalized diffusion equation, derived in [1]. Retaining in this
equation those terms depending on the derivatives of the dynamic quantities, which were neglected in {1],
we obtain following [1] the relation

@zZrdzy O, ®) ¢ dy A\
Foo (0. k) =20k~ =W, 9 (S (@, k)) 2.8)
M (0, k) = (\co——k%i?—)z—}-(Dkk— f;,‘% o), D =Dy

Here D is the particle diffusion coefficient tensor, and for the particle spectral density &p, p (k) in the
system of statistically independent particles, we have the approximate expressions [1]

Y

Dro (K)o 328 (03 (1 — S2) SR B Hocos o

8n? P (kbo)®
- 3 <pd 1,z>0
0o = G (1= )Yt Y@ =g xzo (2.9)
__a <\ _[Bu 4
by = ¢y (1 'P*) ’ k°_<2 ) bo

Relations (2.8), (2.9), together with the mentioned representations of all the random measures in
terms of dZ, make it possible to find the pseudoturbulent averages which are of interest in the theory.
The averages determined in this way will, of course, depend not only on the dynamic variables and the
physical characteristics of both phases, but also on all the pseudoturbulent averages encountered in the sto-
chastic equations and in (2.8). To express these averages in terms of the dynamic variables we use the
obvious equations

@y = %o, (0, W dodk = {<az,* a2, (2.10)

where ¢' and b' are any pseudoturbulent variables. Moreover, the a priori unknown components of the
diffusion tensor D appear in (2.8). Representing them in the usual way in terms of the integrals of the
corresponding Lagrangian correlation functions for the particle velocity, we obtain as a result the equa-

tions
10 0 .
By = § ar{{eo (¥t 03 0, 1) + Wty (0, 1) do di (2.11)
0

An example of the calculation of (w'?) and Dj; from (2.10) and (2.11) and further investigation of the
dynamic equations can be found in [2].

Further, we have the system of linear algebraic equations for the quantities sy, sp, Sy appearing in
the kinetic equation (1.5)

Pwi'y = s wi'wy'>,  (p'wi'y = sps{wi'wy’y (v'wi’d = spy {wi'wi", Su=8,—1 (2.12)
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Assuming that the tensor A in (1,5) is independent of w', we can in principle find the solution (1.3),
which depends on A as a parameter. Equating the known expressions for (wj’ Wj'> to the corresponding
expressions obtained directly from the distribution function, we then obtain the system of equations for
finding the components of the tensor A, Thus, the distribution function can also be expressed in terms of
only the dynamic variables and the physical parameters of the phases. Specifically, it can be used to re-
fine the parameters c and N in (1.16).

We note that the entire theory proposed is meaningful, naturally, only for T« Ty, L<«< Ly, where T
and L are the pseudoturbulence time and space scales, and T,, L, are the corresponding average flow
scales., A similar situation holds in the kinetic theory of gases. It is the satisfaction of these inequalities
which makes it possible, in particular, fo assume that the spectral measures introduced above depend on
t and r (implicitly, through the dynamic variables) so weakly that the use of the mathematical apparatus
of stationary random processes is admissible.

The concrete calculations using the scheme proposed in Section 2 are in most cases very tedious
and time consuming, Therefore, if is advisable in the future to examine successive approximations in the
small ratios T/T,, 1/Ly. Such approximations of zero, first, and second order respectively have the same
meaning as do the hydrodynamic approximations of Euler, Navier—Stokes, and Burnett,

LITERATURE CITED

1.  Yu. A, Buevich, "Hydrodynamic model of dispersed systems,"” PMM, vol. 33, no. 3, 1969,

2. Yu. A. Buevich and V. G, Markov, "Structure of equilibrium pseudoturbulence in gas suspensions
under conditions of local nonhomogeneity,” PMTF [Journal of Applied Mechanics and Technical
Physics], vol, 10, no. 5, 1969,

3. 8. Chandrasekhar, Stochastic Problems in Physics and Astronomy [Russian translation], Izd-vo
inostr. lit., Moscow, 1947,

4, O. M. Todes, A. K. Bondareva, and M. B. Grinbaum, "Motion and displacement of solid phase par-
ticles in fluidized bed," Khim. prom-st',no. 6, 1966.

5. G. Houghton, "Particle and fluid diffusion in homogeneous fluidization," Ind. Engng. Chemistry
Fundamentals, vol. 5, no, 2, 1968,

6. V. G. Levich and V. P, Myasnikov, "Kinetic model of boiling bed,” PMM, vol, 30, no, 3, 1966.

7. S, Chapman and T. Cowling, Mathematical Theory of Nonuniform Gases [Russian translation], Izd-vo
inostr. lit., Moscow, 1960.

8. 8, Corrsin and J. Lumley, "On the equation of motion for a particle in turbulent fluid," Appl, Sci.
Res. A, vol. 8, no. 2-3, 1956.

9. P. G. Saffman, "The lift of small sphere in a slow shear flow," J. Fluid Mech., vol. 22, no. 2, 1965.

10. L. D. Landau and E. M. Lifshitz, Mechanics of Continuous Media [in Russian], Gostekhizdat, Moscow
1954,

11. J. D. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids [Russian
translation], Izd-vo inostr, lit., Moscow, 1961, ,

12,  Yu. A. Buevich and V. M, Safrai, "Viscosity of the liquid phase in a dispersion," PMTF, vol. 8, no,
2, 1967.

’

913



