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The system of dynamic equations descr ib ingthe  average motion of the phases of a monodis-  
perse  suspension considered as two interacting interpenetrat ing continua is obtained. Re-  
lations are  written which permit  determining the average quantities and the corre la t ion  func- 
tions charac ter iz ing  the local s t ruc ture  of the flowing suspension. 

The general  principles underlying the physieomechanical  theory  of d ispersed sys tems based on s ta-  
t is t ical  analysis  of their  internal s t ruc ture  (random velocit ies of the par t ic les  and of the fluid phase, and 
suspension p r e s s u r e  and concentration pulsations) are  discussed in [1]. The application of the developed 
theory to the study of the s t ruc ture  and mechanical  behavior of gaseous suspensions, where the calculations 
can be simplified considerably by neglecting the momentum and viscosi ty  of the gas, has made it possible 
to achieve good agreement  with the available experimental  data and to explain severa l  important  observed 
phenomena. Gas suspensions are  charac te r ized  by a ve ry  high level of development of the pulsative ("pseudo- 
turbulent") motions of the phases, and their  flows are  frequently locally nonhomogeneous, in the sense that 
in the flows there  are  formed aggregates  containing a large number of par t ic les ,  bubbles filled only with 
gas, and so on [2]. 

Conversely,  flows of suspensions of sufficiently fine par t ic les  in liquids are  usually locally homo- 
geneous and the velocities of the random phase pulsations are  re la t ively small.  However, in this case we 
still c anno t  neglect the inert ial  forces  which ar i se  f rom accelera t ion of the liquid or the viscous s t r e s ses  
in the liquid. Therefore ,  the analysis of such suspensions differs somewhat f rom that ca r r ied  out in [1, 2]. 
Specifically, it is neces sa ry  to make a more  careful  examination of the interaction forces  between the two 
phases,  associated with the accelera t ion of the added liquid masses  during relat ive motion of the part icles ,  
and the result ing refinement of the previously obtained dynamic and stochast ic  equations. This refinement 
is made in the present  study; in so doing the logical scheme of [1, 2] is retained unchanged. 

1.  D Y N A M I C  E Q U A T I O N S  

In accordance with the method of [1], we represent  the par t ic le  velocity w, velocity v of the liquid 
phase in its specific volume, and the local values of the suspension volumetr ic  concentrat ion p and p r e s -  
sure  p in the form 

<v'> = <w'> = <p'> = <p'> = 0 

v = <v} -~v',  w = <w> -~ w', p = <p> ~ p', p = <p> + p' (1.1) 

Here the f i rs t  t e rms  in the right sides are  the ensemble average values of the corresponding quan- 
tities (dynamic variables) ,  and the second t e rms  are  their  random pulsations (pseudoturbulent variables) .  
The ensemble averaging in (1.1) can be pictured as sequential averaging with respect  to the conditional dis-  
tributions f (p ;  t, r I P, v, w), f ( p ;  t, r iv, w),f(v; t, r I w) introduced in [1], normed by unity, and then with 
respect  to the par t ic le  velocity distribution f (w; t, r), which is conveniently considered to be normed by 
the countable part icle  concentrat ion n(t, r). If we per fo rm averaging only with respect  to the conditional 
distributions (denoted below by the superscr ip t  degree symbol), we can write 
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v ~  w ~  p ~  p ~  

(v")S = (w"}S = (P")t := (P")S = 0, w" ~- w '~ (1.2) 

w h e r e  ( )I d e n o t e s  a v e r a g i n g  wi th  r e s p e c t  to  t he  d i s t r i b u t i o n f ( w ;  t ,  r ) .  F o r  the  l a s t  t e r m s  in the  r i gh t  

s i d e s  of (1.2), we t a k e  

v " =  s~w', w ~ = I w ' ,  p " =  s~w', p " ~  spw', I =l]6~j]] (1.3) 

H e r e  s v, Sp, Sp a r e  s o m e  unknown t e n s o r s  and v e c t o r s  which  can,  n a t u r a l l y ,  depend  on the  d y n a m i c  
v a r i a b l e s .  We  note  tha t  the  a s s u m p t i o n s  (1.3) a r e  not  e s s e n t i a l  f o r  f o r m u l a t i n g  the  d y n a m i c  and s t o c h a s t i c  
equa t ions  but  a r e  i m p o r t a n t  in f ind ing  the  func t ion  f (w ; t ,  r ) .  We  no te  tha t  ana logous  r e l a t i o n s  can a l so  
be  w r i t t e n  f o r  the  o t h e r  r a n d o m  q u a n t i t i e s  wi th  doub le  p r i m e s .  

In o r d e r  to ob ta in  t he  d y n a m i c  equa t ions  def in ing  the  a v e r a g e  m o t i o n  of the  d i s p e r s e d  p h a s e ,  we m u s t  
have  the  k i n e t i c  equa t ion  f o r  t he  u n a r y  d i s t r i b u t i o n  f u n c t i o n f  (w; t ,  r ) .  As  noted  in [1], t h i s  equa t ion  in the  
c o n v e n t i o n a l  s e n s e  (not con ta in ing  h i g h e r  m u l t i p a r t i c l e  d i s t r i b u t i o n  func t ions)  does  not  e x i s t  even  f o r  p a r -  
t i c l e s  s u s p e n d e d  in a g a s .  T h e r e f o r e ,  an a p p r o x i m a t e  equa t ion  was  u s e d  in [1], in which  the  t o t a l  f o r c e  
F p  ac t ing  on t h e  p a r t i c l e  was  r e p l a c e d  by  i t s  a c t u a l  a v e r a g e  va lue .  H e r e  we s h a l l  a l s o  u s e  t he  quan t i t y  
F p  ~ ob ta ined  b y  a v e r a g i n g  with r e s p e c t  to  t he  c o n d i t i o n a l  d i s t r i b u t i o n s ,  with the  o b j e c t i v e  of ob ta in ing  the  
equa t ion  f o r  f (w; t ,  r ) ,  which  p l a y s  t he  r o l e  of t he  k ine t i c  equa t ion  "in the  m e a n . "  

We a s s u m e  f i r s t  t ha t  d i r e c t  c o l l i s i o n s  do not  o c c u r  in the  s u s p e n d e d  p a r t i c l e  s y s t e m ,  and so we in -  
t r o d u c e  the  p r o b a b i l i t y  W ( A r ,  &w, At I r0, w0, to) of p a r t i c l e  t r a n s f e r  f r o m  the  p h a s e  v o l u m e  e l e m e n t  (r0, 
r 0 + d r ;  w0, w0+dw) in which  i t  was  l o c a t e d  at  the  m o m e n t  t o into t he  e l e m e n t  (r ,  r + d r ;  w, w + d w )  du r ing  
the  t i m e  At,  w h e r e  

r = ro + Ar, w = Wo + A w ,  t = to + At 

C l e a r l y ,  f ( w ;  t ,  r )  can b e  w r i t t e n  in i n t e g r a l  f o r m  

/ (w; t, ,,) = iI w (At, Aw, At l to, w0, to) ! (w0; to, to) dr0 dwo 

H e n c e  we ob ta in  c o n v e n t i o n a l l y  [3] the  equa t ion  

0--7 ̀-= - -  dr \ At j--"O-ff-\ At - - ' ~ - {  -~-r *'~-r 

a ,b  -----[i aibj II, A : B = AtjBj i  

w h e r e  t he  s y m b o l  {} deno t e s  a v e r a g i n g  wi th  r e s p e c t  to  the  t r a n s f e r  p r o b a b i l i t y ,  f o r  e x a m p l e ,  

SI ,w (A,, Aw, A,[,, w, ,0) dr0dwo {Ar} 

Le t  us  e x a m i n e  (1.4) in s o m e  p a r t i c u l a r  c a s e s .  F o r  a gas  of e l a s t i c  p a r t i c l e s  t he  t r a n s f e r  p r o b -  
a b i l i t y  is  the  6 - func t ion ,  and to  wi th in  O((At2)) we have  

{Ar} ~ Ar ~ wAr, {Aw} : Aw = (Fp/m) At 

w h e r e  m is  the  p a r t i c l e  m a s s ,  F p  i s  i ndependen t  of w, and a l l  the  r e m a i n i n g  q u a n t i t i e s  in the  b r a c e s  in 
(1.4) a r e  of o r d e r  (At) 2. F o r  s m a l l  At we ob ta in  f r o m  (1.4) t he  B o l t z m a n n  equa t ion  wi thout  t he  c o l l i s i o n a l  
t e r m .  

F o r  a s y s t e m  of B r o w n i a n  p a r t i c l e s  we have  wi th  the  p r e v i o u s  a c c u r a c y  

(Ar} : wAr, (Aw} = (Fp/m) At . . . .  uwAt, {hw*Aw} ~ AAt 

w h e r e  A is  s o m e  ( "d i f fus iona l " )  t e n s o r .  Us ing  t h e s e  r e l a t i o n s ,  we obta in  the  F o k k e r - P l a n c k  equa t ion .  

I t  fo l lows  f r o m  e x p e r i m e n t s  [4] t ha t  in the  s y s t e m  in q u e s t i o n  t h e r e  a r e  bo th  l a r g e - s c a l e  p u l s a t i o n s  
and s m a l l - s c a l e  " j i t t e r "  of the  p a r t i c l e s  and l iqu id  wi th in  the  l i m i t s  of t h e i r  s p e c i f i c  v o l u m e s ,  and t h e s e  
p s e u d o t u r b u l e n c e  c o m p o n e n t s  can  be  c o n s i d e r e d  s t a t i s t i c a l l y  i ndependen t .  The  c h a r a c t e r i s t i c  t i m e  of t h e s e  
c o m p o n e n t s  c o i n c i d e s  r e s p e c t i v e l y  with the  " o u t e r "  T and " i n n e r "  ~- p s e u d o t u r b u l e n c e  t i m e  s c a l e s  ( see  
[1, 2] and the  r e f e r e n c e s  t h e r e i n ) ,  w h e r e  T >> ~-. Se l ec t i ng  At in (1.4) so  tha t  ~-<<At <<T, we s e e  tha t  in the 
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gene ra l  c a s e  the r e su l t ing  equation will  contain t e r m s  which a r e  typ ica l  f o r  both the Bol tzmann  and F o k k e r -  
P lanck  equat ions .  Specif ical ly ,  t h e r e  a p p e a r s  in this  equat ion a t e r m  desc r ib ing  diffusion in ve loc i ty  space .  
It appea r s  that  the k i ne t i c  equat ion fo r  suspended  p a r t i c l e s  with account  f o r  d i f fus ion in ve loc i ty  space  was 
f i r s t  s tudied in [5] and [6]. The las t  t e r m  does  not affect  the  m a s s  and m o m e n t u m  c o n s e r v a t i o n  equat ions  
fo r  the d i s p e r s e d  phase ,  and in this  connect ion  it was not in t roduced  in [1]. We shal l  cons ide r  this t e r m  
here ,  bea r ing  in mind  s o m e  f u r t h e r  appl ica t ions .  

Conver t ing  in the usua l  way f r o m  the se t  of independent  v a r i a b l e s  t, r ,  w to the se t  t, r ,  w '  = w -  (w) 
and in t roducing  the eo l l i s iona l  t e r m ,  we obtain f r o m  (1.4) the  k ine t i c  equat ion [7] 

Dt ~- ~ -  ~ caw [.\ m N / - -  *W'  : 

- - -W ~ -  ~ : ( M ) +  ~ / - ,  Dt -- 0t +<w>-~-  

The  las t  t e r m  in (1.5) d e s c r i b e s  the change o f f ( w ;  t, r) owing to d i r ec t  eoI l i s ions  be tween pa r t i c l e s .  
If the s m a l l - s c a l e  mot ions  a r e  i so t rop ie  (some evidenee  f avor ing  this  hypo thes i s  is p r e s e n t e d  in [4]), then 
A =AI.  

if the co l l i s ions  do not lead to change of the to ta l  m a s s  and m o m e n t u m  of the col l iding pa r t i c l e s ,  
with the aid of s t anda rd  techniques  [7] we obtain the fol lowing c o n s e r v a t i o n  equat ions:  

O<p> 0 D<95 . , O<w> 
at + - ~ -  (<O> <w>) -- Dt ~- ~p) ~ = 0 

D <w> 0p(p) 
d2 (9> - - ~  -- Or [- ~ (F~), P(P~ = d~ (p) <w',w'> (1.6) 

H e r e  d 2 is the  p a r t i c l e  m a t e r i a l  densi ty ,  and P(P) is the in te rna l  s t r e s s  t e n s o r  in the  d i s p e r s e d  phase .  
The e x p r e s s i o n  (1.6) fo r  P(P) was obtained by neg lec t ing  the  ins tan taneous  na tu re  of m o m e n t u m  t r a n s p o r t  
within the p a r t i c l e s  t h e m s e l v e s .  Account  f o r  this  effect ,  which plays  a s igni f icant  ro l e  in concen t r a t ed  s y s -  
t e m s ,  leads  to the fol lowing e x p r e s s i o n  fo r  P(P): 

p(P)~cp:z~<p) <w'.w'>, ~p= [i - -  (<O> / p,)'/~] -~ (1.7) 

H e r e  p .  is the v o l u m e t r i c  concen t r a t ion  of the suspens ion  in the dense  packing s ta te .  

Now let us examine  the f o r c e s  act ing on the pa r t i c l e .  The f o r c e  mg ac ts  on the  p a r t i c l e  f r o m  the ex-  
t e r n a l  m a s s  field, where  g is the  a c c e l e r a t i o n  of this  f ield.  We r e p r e s e n t  the in t e rac t ion  f o r c e  of the p a r -  
t i c le  with the  su r round ing  fluid in the f o r m  [1, 8] 

t 
Fi  = - -  ~o ~-8P + z r n [ ~ K ( p )  _ ~ ( ~ ) ) . ~ _ [ ~ _ y  i l , du (p).,,f~du t t dr' ~ (1.8) 

= ,  V i - - : ~  --co 
4 3 9vo 9 / Vo ' % la~ dl ~~ ~ '  ~ -  2~"~' ~ = ~ [ ~ - )  ' ~ ~  * = W '  u = v - - w  

H e r e  d i f fe ren t ia t ion  with r e s p e c t  to t ime  is p e r f o r m e d  along the  p a r t i c l e  t r a j e c t o r y ;  a is the p a r t i c l e  
r ad ius ;  P0 and d 1 a r e  the v i s c o s i t y  and dens i ty  of the fluid; and K, ~, ~ a r e  s o m e  funct ions  of p, whose  s p e -  
c i f ic  f o r m  is not e s sen t i a l  fo r  the p u r p o s e s  of this  s tudy.  F o r  an i so la ted  Stokesian p a r t i c l e  we have 

K = t ,  ~ ~ ' / ~ ,  ~1--~ t 

In (1.8) no account  is taken of  the t r a n s v e r s e  fo r ce ,  which ac ts  even on the Stokes ian  p a r t i c l e  in s h e a r  
flow [9], o r  of poss ib l e  ro ta t ion  of the pa r t i c l e s .  M o r e o v e r ,  the v i scous  i n t e rphase  in te rac t ion  f o r c e  is 
cons ide red  to  be l i nea r  in the r e l a t i ve  ve loc i ty  u. These  approx ima t ions  a r e  well  jus t i f ied  fo r  suf f ic ient ly  
sma l l  Reynolds  n u m b e r s  fo r  flow about p a r t i c l e s  c h a r a c t e r i s t i c  fo r  the suspens ions  c o n s i d e r e d  he re .  

To within t e r m s  of second o r d e r  in the pseudoturbu len t  v a r i a b l e s  we o b t a i n f r o m  (1.8) the  r e l a t ions  

a<p~ { [ dK . , ,  t d~K ] 
<Ft> ~ -- ~0---g~- ~- urn ~ K (u) -{- d - ~  p u ) + 2 d<p>'~ <u) (p,2> 

~- D <u> d~ / , [ du' . ( , O ) }> 1 d~ D<U> 

--oo 

(1.9) 
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{( ( 0 )  ] 
, Op' d K  (U}p')-~-~ - ~  @ W ~ -  <U} 

d~ D<u> 1 dt' ~ 

- - 0 3  

K--~K(<p>), ~-~(<p}), ~l-------~(<P)) 

In the expression for F i' there must in addition appear the sum of terms of the form a ' b ' -  (a'b'), 
where a' and b' are arbitrary pseudoturbulent variables. However, here and in the sequel in the stochastic 
equations we actually use quantities obtained by averaging over the time interval At >> ~" introduced above. 
The characteristic time for change of the indicated terms with zero average is ~-, therefore they drop out 
in such averaging (see also discussion in [I]). 

For the vector Fi ~ in (1.5) we have the representation 

Fi ~ =<Fi> ~- F({u',p',p'~suw" , %w',SpW'}, s u = s v - - I  (1.10) 

In the second t e r m  in the r ight  side of (1.10) the a rguments  a re  rep laced  in accordance  with (1.1)- 
(1.3). 

In der iving (1.6) f r o m  (1.5), it is a s sumed  that the momentum of the colliding pa r t i c l e s  is col l is ion-  
invar iant .  In actuali ty,  the ve loci t ies  of both e las t ic  pa r t i c les  par t ic ipat ing in the col l is ion change s tep-  
wise  as a r e su l t  of the coll ision,  which leads to s tepwise  acce le ra t ion  Of the added fluid m a s s e s .  It is ob- 
vious that  the fo rce  resul t ing  f r o m  these  jumps is not taken into account in [18]. This  fo rce  was calculated 
in [10] for  an isolated Stokesian par t ic le ;  if the par t i c le  veloci ty  changes jumpwise  by the magnitude Aw 
at the moment  t = 0, then 

/1 
F~ = zrnt-2-5 (t) ~ - - - ~ ) A w  (1.11) 

If the ave rage  t ime  between two succes s ive  par t i c le  veloci ty  jumps is ~-c' the to ta l  pa r t i c l e  m o m e n -  
t r u m  loss  as a resu l t  of a single jump is wri t ten in the f o r m  

~c 

AM = F~ dt = ~m --2- -~ 27 V-~c 
- - 0  

This effect  is m o s t  eas i ly  taken into account by " smea r ing"  this momen tum loss ove r  t ime,  i.e.,  by 
introducing into the expres s ion  for  Fp  the additional "diss ipat ive"  fo rce  F d. The fo rce  F d has p r e c i s e l y  
the s ame  sense  as,  fo r  example ,  the "diffusive" fo rce  introduced in the analys is  of diffusion p r o c e s s e s  by 
the methods of i r r e v e r s i b l e  p r o c e s s  t he rmodynamics .  To de te rmine  Fd  we evaluate  the to ta l  pa r t i c le  en- 
e rgy  diss ipat ion in the suspension owing to instantaneous acce le ra t ion  of the fluid phase  during coll is ions.  
Examining the col l is ion of a pa i r  of e las t ic  pa r t i c l e s  in a coordinate  sy s t em in which one of them is at r e s t  
and the o ther  t r a v e l s  with the re la t ive  veloci ty  V, fo rming  the angle r with the l ine of cen te r s  at the m o -  
ment  of collision, we see  that the veloci ty  jump of the moving pa r t i c l e  is 2 V sin ~b [7]. Accounting for  the 
cons t ra ined na ture  of the mot ion of replac ing  the coefficient  t/2 in (1.12) by ~, and replac ing  y by ),q,  we 
have f r o m  (1.12) 

AM(V, ~)) = %m(~ -}- 47~ ]/-%~) Vsin• (1.13) 

Hence,  we obtain a lso  the express ion  for  the work AA p e r f o r m e d  on the fluid as a resu l t  of the col-  
l is ion 

AA(V, ~) = • -F 4,in VT-~)V~ sin%p (1.14) 

We obtain the speci f ic  pa r t i c le  energy diss ipat ion W d per  unit t ime  owing to the cons idered  phenom-  
enon a f te r  averag ing  (1.14) with r e s p e c t  to V and the col l is ion p a r a m e t e r  r and mult iplying the resu l t  by 
N/2 (where N /n  =3--~c is the col l is ion frequency),  i .e.,  we have f r o m  (1.14) 

1 

N < 2 I A A c o s ~ d ( c o s ~ ) ) = _  + •  47nVNVn Wd = ~ -  / <w'~> (1.15) 
/ 

o 
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H e r e w e h a v e  taken (V 2) =c (w~2). Represent ing  W d in the f o r m  of a sum ove r  the pa r t i c les  in unit 
volume,  we have f rom (1.15) 

n 

W d = ~ , F a d ) w  "d), F d ~ - - ~ m ~ w ' ,  ~ = - ~  %- ~ +  4TI ] (1.16) 
J = l  

The p a r a m e t e r s  c and bT introduced above can be approx imate ly  evaluated by using the co r r e spond-  
ing express ions  which hold for  a dense gas  with i so t ropic  veloci ty  dis t r ibut ion [7]: 

( ~  )'/' <p, 
c == 2, N = t6a~n ~ ~ - -  <w'2> %, n = -  , ~  (1.17) 

He re  the coefficient X shows how many t imes  the b inary  coll is ion f requency  i n c r e a s e s  in the s y s t e m  
of pa r t i c l e s  of volume ~0 ;~ 0 in compar i son  with the s y s t e m  of point pa r t i c l e s .  Using the Enskog r e su l t s  
[7, 11], fo r  smal l  and la rge  (p) we obtain the following express ions  for  ~ for  the dense gas of e las t ic  
spheres :  

i - -  11/~ <r~> I 
Z~ l--8<p> <P>~P,, Z~  4<p>V3(p,,l~ <p>V~ ), <P>~P, (1.18) 

F r o m  (1.16) and (1.17) we obtain a lso  the e s t ima te  fo r  ~: 

We note that the express ions  obtained he re  can be cons idered  valid only- for  local ly  homogeneous 
d i spersed  sy s t em s ,  when it is admiss ib le  to cons ider  the pa r t i c l e s  independently of one another .  How- 
ever ,  local  nonhomogeneity is c h a r a c t e r i s t i c  bas ica l ly  for  gas suspension flows, where within the f r a m e -  
work of the approximat ion  ~ = 0  (but f i x  30) used in [1, 2] the fo rce  F d f r o m  (1.16) can in genera l  be neg-  
lected.  

In der iving the dynamic equations for  the fluid phase,  we wri te  the equations of motion of the fluid 
through the la t t ice  of pulsating pa r t i c l e s  in the f o r m  

( ~ _ +  v o ov ~p 

Ov i Ovj 2 ov l 
+ o(~e)0r . ~ - d l ( l - - ( P ) ) g - - ,  <P--~> F~0 ,, e =  -~-j + oz i y6ij0-~- l ~ ~=~0S(p)  (1.20) 

Here  # is the effect ive v i s c o s i t y  of the fluid phase  flowing through the par t i c le  lat t ice.  [The func-  
tion S(p) was calculated in [12] on the bas i s  of the ce l lu la r  model  of cons t ra ined pa r t i c l e  flow. V. M. Safrai ,  
using a l te red  ve r s ions  of this model ,  obtained recen t ly  somewhat  different  express ions  for  S(p).] The 
v iscous  t e r m  is introduced into (1.20) so that the "compress ib i l i t y"  of the fluid phase  owing to changes of 
suspension concentra t iondoes  not lead to  any energy  dissipat ion.  The t e r m  with the v iscous  s t r e s s e s  in (1.20) 
is not mult ipl ied by 1 - p, s ince by the sense  of its definition the v i scos i ty  # de sc r ibe s  the s t r e s s e s  r e -  
f e r r e d  to the volume of the mix ture ,  and not to the volume of the fluid alone [10, 121. 

Averaging (1.20), we obtain, as in [1], the dynamic equations for  the fluid phase  

(v> ( 9 ) - - ( i - -  (O)) a<v> aq Or ~;- = 0, q = - -  (p 'v ' )  
c o  c~ 

dl  LDT ((1 - -  <p>) <v>) + ~ ( ( t  - -  (P) )  (v> ~ <v>) + - ~ ]  

-- or 0r ~- t~o S <e> + d--75- ~p e ) + ~ ~ (e> <P'b) 

< g i )  + d1( t - -  <p})g --  <e> ~ ,  S_---- S(<p>) (1.21) 

p(1) = dl [ ( i  - -  <p>) <v' �9 v'> + q ,  (v> + <v> �9 q] 

A discuss ion  of the sense  of the var ious  t e r m s  in (1.21) is p resen ted  in [1]. 

The different  pseudoturbulent  ave rages  appear ing in (1.6) and (1.21) must ,  natural ly ,  be exp re s sed  
in t e r m s  of the dynamic va r i ab les .  Usually solutions of equations of the type (1.5) a r e  used for  this pu r -  
pose~ however ,  in the p resen t  case  this  cannot be  done since,  f i r s t ,  (1.5) does not contain informat ion on 
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v ' ,  p', pt and, second, it depends on the unknown tensor  A. Therefore ,  here,  as in [1, 2], we use stat ionary 
random process  corre la t ion  theory  to determine the pseudoturbulent charac te r i s t i cs .  

2. S T O C H A S T I C  E Q U A T I O N S  

Following the method of [1], the stochastic equations for  pseudoturbulent pulsations are  obtained 
f rom the equation of motion of some part ic le  and the equations (1.20), after  subtracting f rom them the 
corresponding averaged equations and averaging the resul t  over the t ime interval At > r .  In so doing, in 
[1] the t ime derivatives along the par t ic le  t ra jec tor ies  were t r ans fo rmed  using the formula  

d 0 0 
dt - -  Ot -~ W ~r 

although, for  example, (~0 /Or )~  does not have a c lear  physical  meaning. 
r ivat ives of different type p rec i se ly  the derivative d/tit, for example, 

0 O d 0 
at k - v 0 7 =  d - g + u ~  - 

Then we obtain f rom (1.20) the stochastic equations 

{d o \  , . a<v> ̂ , ( t --<p>) Ov' O<p>u,=O 
\-y/-+ <u>-a/-)P ~ - 7 7 - t ' -  -3~-~ + - - ~ -  

= -- -bT- q- t~o Se' § <e) p' -- -Tj F(<P> 

Fur ther ,  the par t ic le  equation of motion has the form 

dw 
m -3-/-- = F~ + F d + F~ + m g  = Fp 

Here we identify in the t ime de- 

(2.1) 

(2.2) 

where Fe  is the random force  acting during collision of the identified par t ic le  with the neighboring pa r -  
t ic les  and disappearing upon averaging over  At. After a simple t ransformat ion  we obtain f rom (2.2) still 
another s tochast ic  equation 

dwr m-g/- = F~'q-F d , Fd' ~ Fa (2.3) 

Thus, all the random functions are  examined in the coordinate sys tem travel ing together  with the 
part icle.  In the zero approximation with respec t  to the derivat ives of the dynamic quantities, the approach 
in this study is identical to that of [1], where the analysis was made in a coordinate sys tem travel ing to-  
gether with the average dispersed phase flux. 

We represen t  all the random functions in the form of F o u r i e r - S t i e l t j e s  integrals,  for example, 

p' : Ie~(~+k~)dZp, v ' =  Id(~.k~)dZ~ (2.4) 

Substituting relat ions of the type (2.4) into (2.1) and (2 .3) ,  we obtain the equations for  the spectra l  
measures  in t e rms  of F o u r i e r - S t i e l t j e s  integrals 

0 <p> (dZ~ -- dZw) = 0 [i + <u>k) + d z o - i ( 1 -  <p>) k dZo + 

dS . a <e> \ dZ 

q-i[O<P>\--37--\(k*dZ~q-dZ*'*k-- -g-2 (k dZ') I)] q- d<p>'d"S OrOP (e> dZ~} 

<P> dZ~ ) - -  id=o~ gz,~ = z ; '  (gZ~) + dZ~ )) 
60 
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We obtain the re la t ions  for  dZ(~ ) and dZ(F d) f r o m  (1.9) and (1.16) 

dig dZ~l dZ~ ) --= --  iz0kdZ. -4- d~z0 {~ [K (dZ~ --  dZ~) + - ~  (u} 

d~ D (u> dZ~ 

+ ~{[r , (co) (dZo--dZ~, , )~- (dZ~O)r~ (~o)-~- r, (co) dZ,]} 

dZ(~ ) = --  d~zo~ dZ~ 

The quanti t ies rl(o)) , r2@) , r~(a~) a r e  r ep re sen ted  in the f o r m  

(2.6) 

O3 CO 

r l  ( r  icol ~l[t_.~e_f~,: V 7r , r 2 ((9) = I 1] <i1) [t-.ce-~a)*'-~d"r 
o o 

d~ I D (u) e_ir d'~ 
ra (co) : d <p> Dt _, V ~  

o 

(2.7) 

Equations (2.5) with account for  (2.6), (2.7) pe rmi t  express ing  the seven spec t r a l  m e a s u r e s  dZvi , 
dZwi, dZp (i =1, 2, 3) in t e r m s  of the spec t r a l  m e a s u r e  dZf~ and the reby  de te rmine  the s ta t i s t i ca l  c h a r -  
a c t e r i s t i c s  of all  the random p r o c e s s e s  in t e r m s  of the p r o c e s s  spec t r a l  densi ty p~. The express ion  for  
the la t ter  is obtained with the aid of the genera l ized  diffusion equation, der ived in [1]. Retaining in this 
equation those  t e r m s  depending on the de r iva t ives  of the dynamic quanti t ies,  which were  neglected in [1], 
we obtain following [1] the re la t ion  

~Fp p (co, k) = (dgp*dZ~> ff)v,~ !k) /' r do~ ,~-1 (2.8) 
, d(0 dk - -  M (co, k) ~,,) M (c0, k)  ] 

(co k 0D~ . /~kk  trD ~\ M(co, k ) =  -- -g~-] -t-~J) --~--b~(ol~ trD-=--Dil 

Here  D is the par t i c le  diffusion coefficient  t ensor ,  and for  the par t i c le  spec t r a l  densi ty  ~p,p 8:) in the 
sys t em of s ta t i s t ica l ly  independent pa r t i c l e s ,  we have the approx imate  expres s ions  [1] 

3~0 - . (t --  <p) ~] sinkbo--kbocoskbo 

�9 o (k) ---- a-3 (t -- Y(ko-- k), = {t, 0 0 ,  x < 0 (2.9) 

bo - < p ~  ~ - .<P>~. 1 '~j , ko = ~(a'~ ~ ' / ' ! z  / bo 

Relations (2.8), (2.9), toge ther  with the mentioned r ep re sen t a t i ons  of all  the random m e a s u r e s  in 
t e r m s  of dZp, make  it poss ib le  to find the pseudoturbulent  ave rages  which a re  of in te res t  in the theory .  
The ave rages  de te rmined  in this way will, of course ,  depend not only on the dynamic va r i ab l e s  and the 
physical  c h a r a c t e r i s t i c s  of both phases ,  but also on all the pseudoturbulent  ave rages  encountered in the s to-  
chast ic  equations and in (2.8). To express  these  ave rages  in t e r m s  of the dynamic va r i ab l e s  we use  the 
obvious equations 

<a'b') = iI  W.,b(co, k)dc0dk = ~<dZa* dZb) (2.1o) 

where a ~ and b '  a r e  any pseudoturbulent  va r i ab les .  Moreover ,  the a p r io r i  unknown components  of the 
diffusion t ensor  D appear  in (2.8). Represent ing  them in the usual  way in t e r m s  of the in tegra ls  of the 
cor responding  Lagrangian  co r re l a t ion  functions for  the pa r t i c l e  veloci ty,  we obtain as a resu l t  the equa-  
t ions 

oo 

SS E l i =  T dT e~'~" (~Fw~,wj (o), k) -]- ~'~,hwi (O), k)) d~odk (2.11) 
0 

An example  of the calculat ion of (w'2> and Dij f rom (2.10) and (2.11) and fu r the r  invest igat ion of the 
dynamic equations can be found in [2]. 

Fur the r ,  we have the s y s t em  of l inear  a lgebra ic  equations for  the quanti t ies  Sr, Sp, Sp appear ing  in 
the kinetic equation (1.5) 

(p'w(> : s~j <w~'w(>, <p'w(> = Spj {ws'w(> (vi'wj'> = s~iz.(wz'u'j>, su = s, - -  I (2.12) 
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Assuming that the tensor A in (1.5) is independent of w', we can in principle find the solution (1.5), 
which depends on A as a parameter. Equating the known expressions for <wi'wj' ~ to the corresponding 
expressions obtained directly from the distribution function, we then obtain the system of equations for 
finding the components of the tensor A. Thus, the distribution function can also be expressed in terms of 
only the dynamic variables and the physical parameters of the phases. Specifically, it can be used to re- 
fine the parameters c and N in (].16). 

We note that the entire theory proposed is meaningful, naturally, only for T << TO, L<< L 0, where T 
and L are the pseudoturbulenee time and space scales, and T0, L 0 are the corresponding average flow 
scales. A similar situation holds in the kinetic theory of gases. It is the satisfaction of these inequalities 
which makes it possible, in particular, to assume that the spectral measures introduced above depend on 
t and r (implicitly, through the dynamic variables) so weakly that the use of the mathematical apparatus 
of stationary random processes is admissible. 

The concrete calculations using the scheme proposed in Section 2 are in most cases very tedious 
and time consuming. Therefore, it is advisable in the future to examine successive approximations in the 
small ratios T/T0, L/L0o Such approximations of zero, first, and second order respectively have the same 
meaning as do the hydrodynamic approximations of Euler, Navier-Stokes, and Burnett. 

LITERATURE CITED 

I. Yu. A. Buevich, "Hydrodynamic model of dispersed systems," PMM, vol. 33, no. 3, 1969. 
2. Yu. A. Buevich and V. G. Markov, "Structure of equilibrium pseudoturbulenee in gas suspensions 

under conditions of local nonhomogeneity," PMTF [Journal of Applied Mechanics and Technical 
Physics], vol. i0, no. 5, 1969. 

3. S. Chandrasekhar, Stochastic Problems in Physics and Astronomy [Russian translation], Izd-vo 
inostr, lit., Moscow, 1947. 

4. O.M. Todes, A. K Bondareva, and M. B Grinbaum, "Motion and displacement of solid phase par- 
ticles in fluidized bed," Khimo prom-st',no. 6, 1966. 

5. G. Houghton, "Particle and fluid diffusion in homogeneous fluidization," Ind. Engng. Chemistry 
Fundamentals, vol. 5, no. 2, 1966. 

G. V. G Levich and V. P. Myasnikov, "Kinetic model of boiling bed," PMM, vol, 30, no. 3, 1966. 
7. S. Chapman and T. Cowling, Mathematical Theory of Nonuniform Gases [Russian translation], Izd-vo 

inostr, lit., Moscow, 1960. 
8. S. Corrsin and J. Lumley, "On the equation of motion for a particle in turbulent fluid," Appl. Sci. 

Res. A, vol. 6, no. 2-3, 1956. 
9. P.G. Saffman, "The lift of small sphere in a slow shear flow," J. Fluid Mech., vol. 22, no. 2, 1965. 

I0. L.D. Landau and E M. Lifshitz, Mechanics of Continuous Media [in Russian], Gostekhizdat, Moscow, 
1954. 

11. J.D. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids [Russian 
translation], Izd-vo inostr, lit., Moscow, 1961. 

12. Yu. A. Buevich and V. M. Safrai, "Viscosity of the liquid phase in a dispersion," PMTF, vol. 8, no. 
2, 1967. 

913 


